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A mathematical model of one experiment ideally 
mounted to the experiment support tube is considered. A 
set of compatibility equations is developed and expanded to 
determine expressions for interaction loads and rotational 
deflections. Two digital computer programs are developed 
to undertake a host of thermal inputs for various experi- 
ment sizes and mounting locations. 
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Symbols 

temperature induced displacement and rotation matrix for the experiment 

temperature induced displacement and rotation matrix for the hexagonal support tube 

influence coefficient matrix for loads applied at the neutral axis of the experiment 

influence coefficient matrix for loads applied at the neutral axis of the hexagonal support 
tube 

matrix of loads acting off the experiment neutral axis and referenced to the neutral axis 
of the experiment 

matrix of loads acting off the hexagonal support tube neutral axis and referenced to the 
neutral axis of the hexagonal support tube 

rotational deflection of point F with respect to point F'  , radians (Figure 3) 

rotational deflection of point F" with respect to point F '  , radians (Figure 3)  

rotational deflection of point F" with respect to point P ,  radians (Figure 3) 

distance between forward experiment mount and assumed cantilevered point, in 

length of hexagonal support tube subjected to free bending, in 

The following symbols, where capped with a bar (-), refer to the hexagonal support tube. 

a 

E 

I 

T 

AT 

A 

h 

X" 

X" 

xM 

coefficient of linear thermal expansion of experiment housing, in/in/"F 

modulus of elasticity of experiment housing, psi 

cross sectional moment of inertia of experiment housing, in4 

uniform temperature of experiment referenced to a datum temperature, OF 

transverse linear thermal gradient applied across experiment, OF 

cross sectional area of experiment housing, in2 

depth of experiment housing, in 

horizontal reaction induced at forward experiment mount, lb 

vertical reaction induced at forward experiment mount, lb 

moment induced at forward experiment mount, in-lb 
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A PRELIMINARY TKER.MAL DISTORTION ANALYSIS 

OF THE 

PROPO6ED AOSO EXPERIMENT SUPPORT STRUCTURE 

bY 
Donald E. Gray 

INTRODUCTION 

One of the primary objectives of the Advanced Orbiting Solar Observatory (AOSO) structural 
subsystem is to satisfy and maintain the stringent optical alignment requirements established be- 
tween sun sensors and certain of the contemplated experiments. The spacecraft substructure 
pertinent to this objective is the central experiment support tube. 

The proposed experiment support tube is an aluminum alloy hexagonal cylinder composed of 
six joined honeycomb sandwich panels. The hexagonal tube is joined to the external observatory 
structure through three radial pylon supports which are attached to the tube at its midspan. Pro- 
posed experiment mounting to the support tube is through two yoke end mounts which a r e  joined by 
four diagonal struts. 

The optical misalignment induced between sun sensors and individual experiments is a func- 
tion of both geometric and thermal variables. For an assumed geometric configuration and zero 
"g" environment, the optical misalignments can be attributed primarily to the temperature gradients 
over, and temperature levels of, both the support tube and the experiments. 

DISCUSSION 

It is of first interest to obtain some estimate of the interaction loads induced at the experiment 
mounts by experiment interaction with the support tube. A s  shown in Figure 1, a single experiment 
is considered mounted to the top of the support tube and left of its midspan. The thermal gradients 
applied across the experiment and tube a r e  assumed linear and constant over the length of the 
structure between mount locations. The Euler-Bernoulli theory is assumed and the experiment 
and tube a r e  considered cantilevered at the aft (right) mount. It is further assumed that no rela- 
tive rotations or displacements occur at the mounts. 

Considering the deflections of points P and (see Figure 1) and applying the above assumptions, 
a set of compatibility equations can be developed in terms of interaction loads at the forward 
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experiment mount. The sign convention used for deflections, loads, and temperature gradients is 
depicted in Figure 2. Also shown a re  the loads at points P and p. In matrix form, the com- 
patibility equation is 

1 

- - 
Since XH = -x,, x, = -xv, and X, = -XM, Equation (1) can be expanded to 

The individual terms of Equation (2) a r e  developed in Appendix A. 

The influence coefficient matrices are unsymmetrical due to the non-zero terms f 12 and f 13 . 
Both terms must be considered since points P and F are at substantial distances from their re- 
spective neutral axis. 

Adjusting the influence coefficient matrices in Equation (2), the load column matrix can be 
rewritten in terms of the three primary reaction loads X,, X , ,  and X,. Thus 

f Lh2/4EI) L2 h/4EI -Lld2EI 

L2 h/4EI L3/3EI -L2/2E] E] 
-Lh/2EI -L2/2EI L/EI 
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Assuming both the support tube and the experiment housing to be constructed primarily of the 
b same material, E = E and a a .  The load matrix can now be isolated by grouping terms and 

factoring. Thus 

A digital computer program written in Fortran II language for the solution of Equation (4) is 
listed in Appendix B as Program I. Using this program, interaction loads can be calculated for 
any number of cases. Loads for eight example cases were calculated and a r e  listed in section A 
of the results. 

Since optical alignments must be held within required limits, it is also of interest to  obtain 
some estimate as to the amount of misalignment induced during flight conditions. The optical 
misalignment can be considered to be the relative angular displacement between two pre-aligned 
points. As  shown in Figure 3, a single experiment is considered mounted symmetrically about the 
support tube midspan. The thermal gradients applied across the experiment and tube a r e  assumed 
linear and constant over the length of both structures. Again the Euler-Bernoulli theory is assumed, 
but the experiment and tube are considered cantilevered at the tube midspan. It is also assumed 
that no relative rotations or displacements occur at the mounts. 

Referring again to Figure 3 and selecting F' as a reference, the rotational deflection of P i s  
simply the rotational terms for the hexagonal tube in Equation (2). Thus 

c xH 7 --a% 
6 BP - = - h - 10 - L Z / r n  ImJ{ xv } 

Expanding Equation (5) we get: 

LZX, Lx, G X ,  - -  -LA% + - - ~ 

86, - h 2EI E1 2EI 

or 
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Since there are assumed no relative rotations o r  displacements at the mounts, Equation (6) also 
represents the rotational deflection of point P with respect to either P '  or  P ' .  

Next consider the rotational deflection of point F'' at the left end of the support tube, If point 
F is selected as a reference, the rotational deflection Of F'' is due only to the temperature gradient 
across the tube. Therefore, if L is replaced by L '  in the temperature induced rotational displace- 
ment term for the hexagonal tube in Equation (2), we get: 

The total rotational deflection of P'' with respect to the midspan, P '  o r  P ' ,  is equal to the 
algebraic sum of the relative deflections. Thus 

Substituting for 6 , ~  and 8 e p l s  and collecting terms 

Since the optical axis of the assumed experiment package has not been defined, the solutions 
of all three Equations (6), (7), and (9) may be of interest. A digital computer program written in 
Fortran II language for the solution of these three equations is listed in Appendix B as Program 11. 
The program also yields the interaction loads introduced at points 
Equation (4). 

and P, i.e., the solution of 

RESULTS 

A. Interaction Loads Introduced at the Forward ExDeriment Mount 

Referring to Figure 1, the interaction loads introduced at points P and P were obtained through 
the solution of Equation (4) for the following eight cases: 

Geometrical Properties Utilized 

Hexagonal Tube 
I = 28.03 in4* 
A = 1.15 in2 
h =  14in 
E = l o 7  psi  . 

a = 12.8X in/in/"F 

- 

- 

- 

- 

- 

Experiment Housing (Assumed) 
I = 1/2andm, in4 
A = 0.50 in2 
h = 7 i n  
E = lo7 psi 
a = 12.8 x l o y 6  in/in/"F 

'See Appendix C for calculations. 
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Temmrature Distributions 

I -  

(a) (b) (4 (dl 

AT = 0°F AT = 1°F AT = 0°F A T =  1°F 
E = 1°F ET = 1°F 25 = 3°F m = 3°F 
T = 0°F T = 0°F T = 0°F T = 0°F 
T = 1°F T = 0°F T = 1°F T = 1°F 

- - - - 

Example Cases with Results 

Case 1 - Assume I = ?1/2, L = 5.75 in, and temperature distribution (a). 
XH = 11.66 lb 
X, = 0. lb 
Xy = -85.45 in-lb 

Case 2 - Assume I = i / 2 ,  L = 28.5 in, and temperature distribution (a). 
X, = 11.66 lb 
X, = 0. l b  
Xy = -85.45 in-lb 

Case 3 - Assume I = T/2, L = 28.5 in, and temperature distribution (b). 
X, = -23.31 lb 
X, = 0. l b  
Xy = 85.46 in-lb 

Case 4 - Assume I = a, L = 5.75 in, and temperature distribution (a). 
XH = 44.61 lb  
X, = 0. lb 
X, = -568.52 in-lb 

Case 5 - Assume I = a, L = 28.5 in, and temperature distribution (a). 
X, = 44.61 lb 
X, = 0. lb  
X, = -568.52 in-lb 

Case 6 - Assume I = m, L = 28.5 in, and temperature distribution (b). 
X, = -66.91 lb 
&, = 0. lb  
X, = 724.64 in-lb 

Case 7 - Assume I = 1/2,  L = 28.5 in, and temperature distribution (c). 
X, = -11.65 lb  
X, = 0. lb  
Xu = -256.33 in-lb 

Case 8 - Assume I = a, L = 28.5 in, and temperature distribution (d). 
X, = -22.301b. 
X, = 0. lb  
Xu = -100.15 in-lb 

5 
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It is of interest to note that the vertical force, X,, is equal to zero for all eight cases. For 
the assumed configuration, the vertical force, X, , is always zero. This relation is shown in Ap- 
pendix A. 

The results a re  presented as sets of parametric curves for the various groups in Figures 4, 
5, and 6 with deflections plotted as a function of the temperature gradient across the hexagonal 
tube. Figure 4 shows the variation of 6 , ~  with nT. This deflection is represented in Program I1 
by the variable name, DEFHEX (see Appendix B). Since the curve slopes a r e  equal and constant 
for all groups, the effect of changing the temperature-gradient combinations is to shift the curve 
along the ordinate to a new deflection for a given n?. reference. This shows that for a given de- 
flection there exists a range of possible nT?s .  It is of interest to note that zero deflections are 
theoretically possible for m3s in the range of k7 seconds of arc.  The apparent subgroups of three 
a r e  for cases containing similar T and Tparameters. The variable within these subgroups is the 
less significant AT parameter. The single curve in Figure 5 indicates the variation of 6,~,$ with 
T for all groups since, from Equation (7), the free bending of the beam is dependent only on 
the thermal variable, 7 3 ,  holding a, L ' ,  and h constant. This deflection is denoted by the variable 
name DEFREL in Program 11. The slope of this function is shown to be -3.051 a r c  sec/"F. The 
variation of 6,,,,with E is shown in Figure 6. This deflection is the algebraic sum of DEFHEX 

a r e  also theoretically possible for nT;s in the range of i7 seconds of a rc .  The slope of these 
l and DEFREL and has  the variable name DEFEND in Program 11. A s  indicated, zero deflections 

curves is shown to be -3.845 a r c  sec/"F. I 

B. Induced Rotational Deflections 

Equations (6), (7), and (9) were solved for  the configuration depicted in Figure 3. The first 
run utilized the fillowing input values assuming aluminum alloy for both the experiment housing 
and the hexagonal tube: I = 28.03 in4, I = T/8, A = 1.15 in2,  A = 0.50 in2, h = 14 in, h = 7 in, 
E = lo7 psi, a = 12.8 x in/in/"F, L = 10.51 in, and L' = 16.17 in. A total of 144 different 
cases of temperature-gradient combinations were considered. In many instances, the same de- 
flection resulted for different temperature-gradient combinations. Therefore, cases yielding 
like deflections were grouped together where each group number identifies the first case in that 
particular group. These groups are listed in Table I along with the corresponding temperature- 
gradient values for each case. 

- 

Several additional runs were executed varying such parameters as the type of structural ma- 
terial, length of support tube, distance between experiment mounts, and experiment housing cross 
sectional moment of inertia. In addition, runs were executed for zero and exceptionally large tem- 
perature gradients across the experiment housing. Parameters for all runs are listed in Table 11. 

Group I w a s  selected as the criterion for correlating the results in the several runs. These 
results are indicated in Table 111 and Figures 7 and 8.  Table III includes the slope A & , F / A i E )  and 
the corresponding interaction loads for the respective runs. The longitudinal interaction force, 
X,, and interaction moment, XM, are shown respectively in Figures 7 and 8 for each run, The 
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results indicate that run 4 with Beryllium as the structural material yields the lowest deflection 
for a given transverse temperature gradient, 73. This run also lends itself to the highest in- 
teraction loads as might be expected. Comparing runs 1 and 2, the effect of zero thermal gradient 
across the experiment housing is to decrease the horizontal force, x,, by approximately 3% and 
increase the moment, xu, by about 13%. However, as displayed in run 3, a AT of 7°F greatly re- 
duces & by about 80% while increasing x, by approximately 20%. It is of interest to observe that 
the deflection curve slope is not affected appreciably by changes in AT in the range considered 
Le., 0 - 13°F. Considering runs 1 and 6, it is seen that increasing the experiment housing cross 
sectional moment of inertia by a factor of ten increases x, by approximately 37%, decreases X, by 
about 6%, and, most significantly, reduces the deflection slope by approximately 31%. Doubling the 
support tube length or, more meaningful, increasing the distance between experiment mounting 
points (run 5) yields a change in the deflection slope which is indicated to be directly proportional 
to this AL. This relation is seen by dividing Equation (6) by and recalling that X, equals zero. 
An interesting result in comparing runs 1 and 5 is that the interaction loads a re  not a function of 
L. This result can be shown by expanding Equation (4). This expansion also shows the vertical 
load, xv, to be zero as indicated in Appendix A. 

4' 

CONCLUDING REMARKS 

For the mathematical model of one experiment combined with the support tube under the in- 
dicated assumptions, the following points may be concluded from the results. 

1. It is possible to obtain the same misalignment or  rotational deflection for different com- 
binations of T, T, and AT. 

2. It is possible to maintain zero deflection for z(T in the range of rt7"F if the values of T, T and 
AT are properly chosen. 

3. Changes in T and T a r e  more significant to misalignment than changes in AT. 

4. The rotational deflection is directly proportional to L. 

5. The interaction loads a r e  independent of changes in L. 
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APPENDIX A 

I. DEVELOPMENT OF INDIVIDUAL TERMS WITH EQUATION (2) 

A. Temperature induced displacement and rotation matrices 

Sketch A-1 
Displacements due to a uniform 
temperature increase. 

----_ "6, r--- 

-- -- 

Sketch A-2 
Displacements due to a linear vertical 
temperature gradient. 

From Sketches A-1 and A-2, induced displacements at point (2) relative to point (1) due to a 
uniform temperature increase ( T )  and a linear vertical temperature gradient (AT) are shown re- 
spectively to be 

and 

*Assuming small  deflections. 
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The induced displacements of point (P) relative to point (1) can be expressed as 

' HT 

'VT 

Therefore, Equation ( A . l )  becomes 

{'T} = 

Going through a similar development, it can be shown that for point (F)  relative to point (3), 

B. Influence coefficient matrix for loads applied at the neutral axis 

[ f l  = 

f H" 

HV 

fHt'  

f V H  

f v v  

f v e  

OH 

f e v  

f e e  

(A.4a) 

(A.4b) 

(A.4c) 

I 

10 



. 

, Where f is defined as the displacement in the j direction due to a load applied in the i direction 

ttr-4 h -  

P 

Sketch A-3 
Unit loads applied at the 
neutral axis, point (2). 

For unit loads applied at point (2), see Sketch (A-3), terms in Equation (A.7) for displacements at 
point (2) become 

L 
f,, = fv, = 0 f B H  = 0 

Therefore, for displacements at point (2) due to unit loads at point (2), Equation (A.7) becomes 

Considering displacements at point (PI due to unit loads applied at point (2) as shown in Sketch 
(A-3), the following two changes occur in the individual terms of Equation (A.8): 

11 



Therefore, the influence matrix of Point (P) for loads applied at point (2) (neutral axis) becomes 

LZh "11 
4EI 2EI 

Using a similar development, it can be shown that the influence .matrix of Point (P)  (see Figure 2) 
for loads applied at point (4) (neutral axis) becomes 

[- 
4EZ 2EZ 

(A.lO) 

C. Off neutral axis load matrix referenced to neutral axis 

XH ++ XH ++ 
Sketch A-4 

Unit loads applied at point 
(P) off neutral axis. 

12 
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. with reference to Sketch (A-4), the indicated loads applied at point (P) reflect the following loads 
at point (2): 

x, = px, 

Substituting these expressions into Equation (A. l l )  and dropping the pre-superscript (P) yields the 
following load matrix at point (2) (neutral axis) due to off axis applied loads (point (P)): 

(A.12) 

Similarly, for loads applied at point (F) (see Figure 2) referenced to the neutral axis, point (4) 

b (A.13) 

II. IDENTITY FOR VERTICAL LOAD, X, 

In Part A of the results it was first shown that, for the assumed configuration, the vertical 
force, $, is always zero. This result can be shown as follows: Writing Equation (4) in con- 
tracted form as 

and redefining the inverse of the combined influence coefficient matrix as 

13 

(A.15) 



and the combined temperature induced displacement and rotation matrix as 

{ST d,} 5 {d} 

Equation (4) can be a l so  expressed in contracted form as 

{X} = [kl {d} 

[kl is known as the combined stiffness matrix. Expanding Equation (A.1’7) yields 

Solving for x, 

Where k 2 ,  , k, 

k l l  k12 13 

k21 k22 23 

I 

(A.16) 

(A. 17) 

(A.18) 

(A.19) 
‘V = k21 d l  ’ k 2 2 d 2  ’ k23 d3 

and k2 ,  are the second row terms of [‘I-’ in Equation (A.15). 

The inverse of [FI is equal to the adjoint of [F] divided by the determinant of [F] . Since [F] 

is symmetrical, the transpose of [F] equals [F] . Further, the adjoint of [F] becomes just the 
cofactor of [FI . Therefore, Equation (A.19) can be expressed in the form 

c2 2 ‘2 3 
d, + - d 2  t - d3 

c21 

I’I IF/ IF1 
- x, = 

where C i j  a r e  the cofactors of the F~~ terms of [F] , and IF1 is the determinant of [FI . 
Expanding the second row cofactors of [F] 

‘21 -(‘I2 ‘33 - F13 ‘32) ; ‘22 = ‘(‘11 ‘33 “13 ’31) 

‘23 = -(‘I1 ‘32 - ‘12 ‘31) 

Substituting into Equation (A.20) yields 

(A.20) 

(A.21) 1 - {(-‘I2 F33 tF13 ‘32) d l  (‘11 ‘33 -‘13 ’31) d 2  ’ (-‘ll ‘32 “12 ‘31) ‘3} I’I x, = 
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Substituting terms c of Equation (4) into Equation (A.21) 

Since C,, d, = 0 and C,, d, = TZ3d3,:  

X" = 0 (A.23) 

for all cases. 
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APPENDIX B I 
Fortran Listing of Programs I and 11 

I. SYMBOL INTERPRETATION 

Fortran 

A 
AH 
AI 
AL 
DT 
DTB 
T 
T B  
EE 
ALPHA 
AIB 
AHB 
AB 
W 1 
C (4 1 
D 

Problem 

A 
h 
I 
L 
AT 
AT 
T 
T 
E 

- 

a 
- 
I 
h 
- 

A 

Cofactor of (f + 
Determinant of [f + f]  

(f + f ) i j  
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11. LISTING OF PROGRAM I 
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APPENDIX C 

Moment of Inertia Calculation for the Proposed Honeycomb Sandwhich Hexagonal Tube 

Sketch C-1 

A s  indicated in Sketch C-1, the proposed support tube is composed of six honeycomb sandwich 
beams joined to form a symmetrical hexagonal cross section. Considering a typical cross section 
of the honeycomb sandwich structure as shown in Sketch C-2, the moment of inertia about its y-y 
axis can be expressed as b 

b(t3- tz)  
1, = 12 

where 

t Sandwich thickness 

tc Core thickness 

b Section width 
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Y-- Y 

Sketch C-2 

Since the c ross  section of the tube is symmetrical across both the Y and z axes, only one quadrant 
need be calculated and then multiplied by four to obtain the total cross sectional inertia of the tube 
about the Y-Y axis, 

Referring again to sketch C-1, the -v'-2 quadrant is shown to be subdivided into two sections, 
A and B .  Expressing the total inertia of the tube in terms of these two sections 

I, = 4 t  i = a  Fyi -t (Z;)*Ai I 
where 

- 
I , ~  Centrodial area inertia about the y -y axis of section i 

Zi' Normal distance from Y-Y axis to centrodial (y-y) axis of section i 

Ai Effective cross sectional area of section i 

Expanding Equation (C .2) 

- 
I, = 4[T,, + (Z;)* Aa + Iyb + (%I)' Ab] 

- t - - t 7 4 L - - - - - Y  

K . 3 )  

z 

4 

Sketch C-3 

22 



With reference to Equation (C.1) and Sketches (C-2) and (C-3), the centrodial area inertias for 
sections A and B can be expressed respectively as ' 

- b, 
I y a  = 12 (t3-t:)  

From Sketch C-3, t '  and t,' can be expressed in terms of t and t ,  as 

t '  = t s e c 4  

and 

tc' = t ,  set+ 

Substituting Equations ((2.6) into Equation (C.5) 

(C.6a) 

(C.6b) 

Assuming the effective area for bending to be only the face sheet cross section of the sandwich 
structure, the effective areas  become (see Sketch C- 1) 

4 = 2A. (C.8b) 

Substituting Equations (C.4), (C.7), (C.8a) and (C.8b) into Equation (C.3) 

1 

bb sec3Q,  
+ 12 ( t3 - tE3)  -t 2(z; 

The following values for  parameters in Equation (C.9) were used to evaluate I , .  
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t = 0.774 in. 

t ,  = 0.750in. 

b, = 4.165in. 

b, = 0.894 in. 

za' = 6.827 in, 

2,' = 3.413 in. 

@ = 30" 

Solving Equation ((2.9) for these values yields an I ,  equal to 28.03 in4. 
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;roup No 

1 

2 

3 

4 

5 

6 

11 

12 

17 

18 

23 
24 
27 

32 

33 

38 

39 

44 
45 

Case No 

1 
9 
28 
36 
2 
25 
35 
3 
26 
34 
42 
4 
8 

29 
5 
7 
15 
30 
6 
10 
14 
11 
13 
21 
12 
16 
20 
17 
19 
18 
22 
23 
24 
27 
31 
41 
32 
40 
48 
33 
37 
47 
38 
46 
39 
43 
44 
45 

Table I 

Grouped Run Cases with Thermal Parameters. 

AT T T 

1 1 1  
1 5 5  
1 -1-1 
1 -5-5 
1 1 3  
1 -1 1 
1 -5 -3 
1 1 5  
1 -1 3 
1 -5-1 
1 -9-5 
1 1 - 1  
1 5 3  
1 -1-3 
1 1-3 
1 5 1  
1 9 5  
1 -1-5 
1 1-5 
1 5-1 
1 9 3  
1 5 -3 
1 9 1  
1 13 5 
1 5 -5 
1 9-1 
1 13 3 
1 9-3 
1 13 1 
1 9-5 
1 13-1 
1 13-3 
1 13 -5 
1 -1 5 
1 -5 1 
1 -9-3 
1 -5 3 
1 -9-1 
1-13 -5 
1 -5 5 
1 -9 1 
1-13 -3 
1 -9 3 
1 -13 -1 
1 -9 5 
1-13 1 
1-13 3 
1-13 5 

;roup No 

49 

50 

51 

52 

53 

54 

59 

60 

65 

66 

71 
72 
75 

80 

81 

86 

87 

92 
93 

Case No 

49 
57 
76 
84 
50 
73 
83 
51 
74 
82 
90 
52 
56 
77 
53 
55 
63 
78 
54 
58 
62 
59 
61 
69 
60 
64 
68 
65 
67 
66 
70 
71 
72 
75 
79 
89 
80 
88 
96 
81 
85 
95 
86 
94 
87 
91 
92 
93 

AT T T 

3 1 1  
3 5 5  
3 -1 -1 
3 -5 -5 
3 1 3  
3 -1 1 
3 -5 -3 
3 1 5  
3 -1 3 
3 -5 -1 
3 -9-5 
3 1 - 1  
3 5 3  
3 -1 -3 
3 1-3 
3 5 1  
3 9 5  
3 -1 -5 
3 1-5 
3 5 -1 
3 9 3  
3 5 -3 
3 9 1  
3 13 5 
3 5 -5 
3 9-1 
3 13 3 
3 9-3 
3 13 1 
3 9 -5 
3 13-1 
3 13-3 
3 13 -5 
3 -1 5 
3 -5 1 
3 -9-3 
3 -5 3 
3 -9-1 
3 -13 -5 
3 -5 5 
3 -9 1 
3 -13 -3 
3 -9 3 
3 -13 -1 
3 -9 5 
3-13 1 
3-13 3 
3 -13 5 

oup No 

97 

98 

99 

100 

101 

102 

107 

108 

113 

114 

119 
120 
123 

128 

129 

134 

135 

140 
14 1 

Case No 

97 
1 05 
124 
132 
98 
121 
131 
99 
122 
130 
138 
100 
104 
125 
101 
103 
111 
126 
102 
106 
110 
107 
109 
117 
108 
112 
116 
113 
115 
114 
118 
119 
120 
123 
127 
137 
128 
136 
144 
129 
133 
143 
134 
142 
135 
139 
140 
14 1 

5 1 1  
5 5 5  
5 -1-1 
5 -5 -5 
5 1 3  
5 -1 1 
5 -5 -3 
5 1 5  
5 -1 3 
5 -5-1 
5 -9-5 
5 1 - 1  
5 5 3  
5 -1-3 
5 1-3 
5 5 1  
5 9 5  
5 -1-5 
5 1-5 
5 5-1 
5 9 3  
5 5-3 
5 9 1  
5 13 5 
5 5 -5 
5 9-1 
5 13 3 
5 9-3 
5 13 1 
5 9-5 
5 13-1 
5 13 -3 
5 13-5 
5 -1 5 
5 -5 1 
5 -9-3 
5 -5 3 
5 -9-1 
5 -13 -5 
5 -5 5 
5 -9 1 
5 -13 -3 
5 -9 3 
5 -13 -1 
5 -9 5 
5 -13 1 
5-13 3 
5 -13 5 
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r 6 

L' I 

(in) (in') 

16.17 3.514 

16.17 3.514 

16.17 3.514 

16.17 3.514 

12.00 3.514 

16.17 35.14 

I - 
I AT("F) 

(in4) Range 

28.03 1 - 5 

28.03 0 

28.03 7 - 13 

28.03 1 - 5 

28.03 1 - 5 

28.03 1 - 5 

A A  
(in2) (in ') 

0.5 1.2 

0.5 1.2 

0.5 1.2 

0.5 1.2 

0.5 1.2 

0.5 1.2 

- 

E 
psi 

107 

107 

107 

4 . 2 ~  1 0 7  

107 

107 

Table I1 

Parameters for Program I1 Runs. 

Support Tube 
Length (in) 

60 

60 

60 

60 

120 

60 

Material 

Aluminum 

Aluminum 

Aluminum 

Beryllium 

Aluminum 

10.51 

10.51 

10.51 

10.51 

48.00 

10.51 

a 

(in/in/ O F )  

12.8 x 

12.8 X 

12.8 X 

7.39 X l o v 6  
12.8 X 

Aluminum 

Table I11 

12.8 X 

Deflection Curve Slopes and Interaction Loads for Program I1 Runs. 

Run No 

1 

2 

3 

4 

5 

6 

Case No 

1 

1 

1 

1 

1 

1 

- 
AT( OF) 

+7 

+7 

+7 

+7 

+7 

+7  

AT("F) 

+1 

0 

+7 

+1 

+1 

+1 

Slope* 
(Arc Sec/"F) 

-0.794 

-0.794 

-0.794 

- 0.455 

-3.628 

- 0.547 

- 97.18 

- 93.82 

-117.34 

-237.00 

- 97.18 

- 87.76 

X,(in-lb) 

-369.21 

-418.47 

- 73.61 

-898.41 

-369.21 

-507.37 
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Figure 1 

FORCE 

+t 
GRADIENT 

YD 
HOT I 

'L+ 

Figure 2 
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3UP No 

72 
1 20 

71 
1 I9 

66 114 

65 113 

6o 108 
59 107 
54 102 

53 101 

52 100 

49 97 

51 99 

50 
98 

75 123 
128 

129 

86 134 

87 135 

92 140 

93 141 
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